Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
2.
Mol Nutr Food Res ; 68(4): e2300086, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38332571

RESUMO

SCOPE: Secretion of the gut hormones glucagon-like peptide (GLP-1) and peptide YY (PYY) are induced by nutrients reaching the lower small intestine which regulate insulin and glucagon release, inhibit appetite, and may improve ß-cell regeneration. The aim is to test the effect of a slowly digested isomaltulose (ISO) compared to the rapidly digested saccharose (SAC) as a snack given 1 h before a standardized mixed meal test (MMT) on GLP-1, PYY, glucose-dependent insulinotropic peptide (GIP), and metabolic responses in participants with or without type 2 diabetes (T2DM). METHODS AND RESULTS: Fifteen healthy volunteers and 15 patients with T2DM consumed either 50 g ISO or SAC 1 h preload of MMT on nonconsecutive days. Clinical parameters and incretin hormones are measured throughout the whole course of MMT. Administration of 50 g ISO as compared to SAC induced a significant increase in GLP-1, GIP, and PYY responses over 2 h after intake of a typical lunch in healthy controls. Patients with T2DM showed reduced overall responses of GLP-1 and delayed insulin release compared to controls while ISO significantly enhanced the GIP and almost tripled the PYY response compared to SAC. CONCLUSION: A snack containing ISO markedly enhances the release of the metabolically advantageous gut hormones PYY and GLP-1 and enhances GIP release in response to a subsequent complex meal.


Assuntos
Diabetes Mellitus Tipo 2 , Hormônios Gastrointestinais , Isomaltose/análogos & derivados , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Peptídeo 1 Semelhante ao Glucagon , Insulina/metabolismo , Polipeptídeo Inibidor Gástrico , Peptídeo YY , Glicemia/metabolismo
3.
Am J Clin Nutr ; 118(5): 938-955, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37657523

RESUMO

BACKGROUND: There is increasing interest in the bidirectional relationship existing between the gut and brain and the effects of both oligofructose and 2'fucosyllactose to alter microbial composition and mood state. Yet, much remains unknown about the ability of oligofructose and 2'fucosyllactose to improve mood state via targeted manipulation of the gut microbiota. OBJECTIVES: We aimed to compare the effects of oligofructose and 2'fucosyllactose alone and in combination against maltodextrin (comparator) on microbial composition and mood state in a working population. METHODS: We conducted a 5-wk, 4-arm, parallel, double-blind, randomized, placebo-controlled trial in 92 healthy adults with mild-to-moderate levels of anxiety and depression. Subjects were randomized to oligofructose 8 g/d (plus 2 g/d maltodextrin); maltodextrin 10 g/d; oligofructose 8 g/d plus 2'fucosyllactose (2 g/d) or 2'fucosyllactose 2 g/d (plus 8 g/d maltodextrin). Changes in microbial load (fluorescence in situ hybridization-flow cytometry) and composition (16S ribosomal RNA sequencing) were the primary outcomes. Secondary outcomes included gastrointestinal sensations, bowel habits, and mood state parameters. RESULTS: There were significant increases in several bacterial taxa including Bifidobacterium, Bacteroides, Roseburia, and Faecalibacterium prausnitzii in both the oligofructose and oligofructose/2'fucosyllactose interventions (all P ≤ 0.05). Changes in bacterial taxa were highly heterogenous upon 2'fuscoyllactose supplementation. Significant improvements in Beck Depression Inventory, State Trait Anxiety Inventory Y1 and Y2, and Positive and Negative Affect Schedule scores and cortisol awakening response were detected across oligofructose, 2'fucosyllactose, and oligofructose/2'fucosyllactose combination interventions (all P ≤ 0.05). Both sole oligofructose and oligofructose/2'fuscosyllactose combination interventions outperformed both sole 2'fucosyllactose and maltodextrin in improvements in several mood state parameters (all P ≤ 0.05). CONCLUSION: The results of this study indicate that oligofructose and combination of oligofructose/2'fucosyllactose can beneficially alter microbial composition along with improving mood state parameters. Future work is needed to understand key microbial differences separating individual responses to 2'fucosyllactose supplementation. This trial was registered at clinicaltrials.gov as NCT05212545.


Assuntos
Frutanos , Inulina , Adulto , Humanos , Inulina/farmacologia , Frutanos/farmacologia , Hibridização in Situ Fluorescente , Prebióticos , Oligossacarídeos/farmacologia , Oligossacarídeos/uso terapêutico , Bactérias , Método Duplo-Cego
4.
J Anim Physiol Anim Nutr (Berl) ; 107(6): 1456-1464, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37448186

RESUMO

Digestible carbohydrates differ in glycaemic response, therewith having the potential to influence metabolic conditions such as insulin resistance and diabetes mellitus. Isomaltulose has been proven to lower the glycaemic response in humans, which to date has not been studied in dogs. Therefore, the aim of the present study was to characterise the digestibility, as well as the physiological effects of isomaltulose in dogs, in comparison to other saccharides. To this end, three studies were performed. Study 1 was an in vitro study, evaluating the small intestinal hydrolysis of isomaltulose compared to other relevant carbohydrate sources. Three of these saccharides, having close and low-moderate degrees of hydrolysis by brush border enzymes, were also evaluated in vivo for their glycaemic effects by measuring plasma levels of glucose, insulin and glucagon-like peptide 1 (GLP-1) 0-180 min after administration of a single dosage after an overnight fast (i.e., isomaltulose, sucrose and maltodextrin in a 3 × 3 Latin-square design, in 9 dogs, Study 2). To understand if digestive enzymes, underlying glycaemic responses for isomaltulose and sucrose can be upregulated, we exposed dogs to these saccharides for 2 weeks and repeated the measurements after an overnight fast in 18 dogs (Study 3). Isomaltulose was hydrolysed by intestinal enzyme preparation from all three dogs, but the degrading activity was low (e.g., 3.95 ± 1.03 times lower vs. sucrose), indicating a slower rate of hydrolysis. Isomaltulose had a low glycaemic response, in line with in vitro data. In vitro hydrolysis of sucrose was comparable or even higher than maltodextrin in contrast to the more pronounced glycaemic response to maltodextrin observed in vivo. The numerically higher blood glucose response to sucrose after continuous consumption, might indicate an adaptive response. In conclusion, the current work provides valuable insights into the digestion physiology of various saccharides in dogs. Further investigations on related benefits are thus warranted.


Assuntos
Glicemia , Sacarose , Humanos , Cães , Animais , Hidrólise , Microvilosidades/metabolismo
5.
J Appl Microbiol ; 134(2)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36724263

RESUMO

AIMS: In this study, we explored the effects that the prebiotic inulin-type fructans, and prebiotic candidates: 2'fucosyllactose and ß-glucan from barley, singular and in combination had on microbial load, microbiome profile, and short-chain fatty acid production. This was carried out as a prescreening tool to determine combinations that could be taken forward for use in a human intervention trial. METHODS AND RESULTS: Effects of inulin-type fructans, 2'fucosyllactose and ß-glucan from barley in singular and combination on microbial load and profile and short-chain fatty acid production (SCFA) was conducted using in vitro batch culture fermentation over 48 h. Changes in microbial load and profile were assessed by fluorescence in situ hybridization flow cytometry (FISH-FLOW) and 16S rRNA sequencing, and changes in SCFA via gas chromatography. All substrates generated changes in microbial load and profile, achieving peak microbial load at 8 h fermentation with the largest changes in profile across all substrates in Bifidobacterium (Q < 0.05). This coincided with significant increases in acetate observed throughout fermentation (Q < 0.05). In comparison to sole supplementation combinations of oligofructose, ß-glucan and 2'fuscosyllactose induced significant increases in both propionate and butyrate producing bacteria (Roseburia and Faecalibacterium praunitzii), and concentrations of propionate and butyrate, the latter being maintained until the end of fermentation (all Q < 0.05). CONCLUSIONS: Combinations of oligofructose, with ß-glucan and 2'fucosyllactose induced selective changes in microbial combination and SCFA namely Roseburia, F. praunitzii, propionate and butyrate compared to sole supplementation.


Assuntos
Hordeum , beta-Glucanas , Humanos , Inulina/farmacologia , Inulina/metabolismo , Propionatos , Hibridização in Situ Fluorescente , RNA Ribossômico 16S/genética , Ácidos Graxos Voláteis , Frutanos/farmacologia , Prebióticos , Butiratos , Fermentação , Hordeum/genética , Hordeum/metabolismo , Fezes/microbiologia
6.
Crit Rev Food Sci Nutr ; : 1-18, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35833477

RESUMO

Inulin-type fructans are considered to stimulate the growth of beneficial microorganisms, like Bifidobacterium in the gut and support health. However, both the fructan source and chemical structure may modify these effects. A systematic review was conducted to assess the effects of chicory-derived inulin-type fructans consumed either in specific foods or as dietary supplements on abundance of Bifidobacterium in the gut and on health-related outcomes. Three electronic databases and two clinical trial registries were systematically searched until January 2021. Two authors independently selected randomized controlled trials that investigated with a protocol of minimum seven days supplementation the effect of chicory-derived inulin-type fructans on Bifidobacterium abundance in any population. Meta-analyses with random-effects model were conducted on Bifidobacterium abundance and bowel function parameters. We evaluated risk of bias using Cochrane RoB tool. Chicory-derived inulin-type fructans at a dose of 3-20 g/day significantly increased Bifidobacterium abundance in participants with an age range from 0 to 83 years (standardized mean difference: 0.83, 95% CI: 0.58-1.08; p < 0.01; 50 studies; 2525 participants). Significant bifidogenic effects were observed in healthy individuals and in populations with health impairments, except gastrointestinal disorders. Significant beneficial effects on bowel function parameters were observed in healthy subjects. Chicory-derived inulin-type fructans may have significant bifidogenic effects and may beneficially influence bowel function in healthy individuals. PROSPERO registration number CRD42020162892.

7.
Front Nutr ; 9: 829933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35340549

RESUMO

It is well-appreciated that the diet is a crucial tool to counteract cardiometabolic disturbances due to its impact on blood glucose concentration and gut microbiome. This retrospective analysis aimed to examine whether the inclusion of isomaltulose and prebiotic inulin-type fructans (ITF) into the habitual diet has an impact on glycemic control and gut microbiota. Furthermore, we examined interindividual differences in glycemic response to sugar replacement with isomaltulose. We retrospectively analyzed data of 117 individuals who participated in a digital nutrition program including a 14-day continuous glucose measurement. Participants underwent six test days with sweetened drinks (isomaltulose vs. sucrose) consumed with their usual breakfasts and lunches. Dinner was supplemented with ITF for 11 days. Postprandial glycemia and 24 h-glycemic variability were determined following test meals and days, respectively. Fecal microbiota was analyzed by 16S rRNA sequencing before and after test phase. Meals with isomaltulose-sweetened drinks compared to meals with sucrose-sweetened drinks induced lower postprandial glycemia. Moreover, glucose oscillations over 24 h were lower on isomaltulose when compared to sucrose test days and improved further during ITF supplementation. Furthermore, ITF modulated gut microbiota composition beneficially. Responder analysis revealed that 72% of participants benefited from the sugar replacement with isomaltulose and that their gut microbiota differed from the low responders. Taken together, the incorporation of isomaltulose and ITF into the habitual diet was shown to be an effective strategy to improve glucose control and beneficially modulate gut microbiota, and thereby aid to maintain metabolic health. Data indicate interindividual differences in glycemic response to ingredients and suggest that gut microbiota might be somehow related to it.

8.
Nutrients ; 13(4)2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33924514

RESUMO

The present study aims to evaluate the effects of an infant formula supplemented with a mixture of prebiotic short and long chain inulin-type oligosaccharides on health outcomes, safety and tolerance, as well as on fecal microbiota composition during the first year of life. In a prospective, multicenter, randomized, double-blind study, n = 160 healthy term infants under 4 months of age were randomized to receive either an infant formula enriched with 0.8 g/dL of Orafti®Synergy1 or an unsupplemented control formula until the age of 12 months. Growth, fever (>38 °C) and infections were regularly followed up by a pediatrician. Digestive symptoms, stool consistency as well as crying and sleeping patterns were recorded during one week each study month. Fecal microbiota and immunological biomarkers were determined from a subgroup of infants after 2, 6 and 12 months of life. The intention to treat (ITT) population consisted of n = 149 infants. Both formulae were well tolerated. Mean duration of infections was significantly lower in the prebiotic fed infants (p < 0.05). The prebiotic group showed higher Bifidobacterium counts at month 6 (p = 0.006), and higher proportions of Bifidobacterium in relation to total bacteria at month 2 and 6 (p = 0.042 and p = 0.013, respectively). Stools of infants receiving the prebiotic formula were softer (p < 0.05). Orafti®Synergy1 tended to beneficially impact total daily amount of crying (p = 0.0594). Supplementation with inulin-type prebiotic oligosaccharides during the first year of life beneficially modulates the infant gut microbiota towards higher Bifidobacterium levels at the first 6 months of life, and is associated with reduced duration of infections.


Assuntos
Alimentação com Mamadeira/efeitos adversos , Fórmulas Infantis/efeitos adversos , Infecções/epidemiologia , Inulina/efeitos adversos , Prebióticos/efeitos adversos , Bifidobacterium/isolamento & purificação , Biomarcadores/análise , Alimentação com Mamadeira/métodos , Método Duplo-Cego , Fezes/química , Fezes/microbiologia , Feminino , Microbioma Gastrointestinal/imunologia , Humanos , Incidência , Lactente , Fórmulas Infantis/química , Recém-Nascido , Infecções/imunologia , Análise de Intenção de Tratamento , Inulina/administração & dosagem , Inulina/análogos & derivados , Masculino , Prebióticos/administração & dosagem , Estudos Prospectivos , Fatores de Tempo , Resultado do Tratamento
10.
Adv Nutr ; 11(5): 1221-1236, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32449931

RESUMO

There is considerable interest in dietary and other approaches to maintaining blood glucose concentrations within the normal range and minimizing exposure to postprandial hyperglycemic excursions. The accepted marker to evaluate the sustained maintenance of normal blood glucose concentrations is glycated hemoglobin A1c (HbA1c). However, although this is used in clinical practice to monitor glycemic control in patients with diabetes, it has a number of drawbacks as a marker of efficacy of dietary interventions that might beneficially affect glycemic control in people without diabetes. Other markers that reflect shorter-term glycemic exposures have been studied and proposed, but consensus on the use and relevance of these markers is lacking. We have carried out a systematic search for studies that have tested the responsiveness of 6 possible alternatives to HbA1c as markers of sustained variation in glycemic exposures and thus their potential applicability for use in dietary intervention trials in subjects without diabetes: 1,5-anhydroglucitol (1,5-AG), dicarbonyl stress, fructosamine, glycated albumin (GA), advanced glycated end products (AGEs), and metabolomic profiles. The results suggest that GA may be the most promising for this purpose, but values may be confounded by effects of fat mass. 1,5-AG and fructosamine are probably not sensitive enough to the range of variation in glycemic exposures observed in healthy individuals. Use of measures based on dicarbonyls, AGEs, or metabolomic profiles would require further research into possible specific molecular species of interest. At present, none of the markers considered here is sufficiently validated and sensitive for routine use in substantiating the effects of sustained variation in dietary glycemic exposures in people without diabetes.


Assuntos
Glicemia , Diabetes Mellitus , Biomarcadores , Desoxiglucose , Frutosamina , Hemoglobinas Glicadas/análise , Humanos
11.
Appl Environ Microbiol ; 86(10)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32198169

RESUMO

Dietary protein residue can result in microbial generation of various toxic metabolites in the gut, such as ammonia. A prebiotic is "a substrate that is selectively utilised by host microorganisms conferring a health benefit" (G. R. Gibson, R. Hutkins, M. E. Sanders, S. L. Prescott, et al., Nat Rev Gastroenterol Hepatol 14:491-502, 2017, https://doi.org/10.1038/nrgastro.2017.75). Prebiotics are carbohydrates that may have the potential to reverse the harmful effects of gut bacterial protein fermentation. Three-stage continuous colonic model systems were inoculated with fecal samples from omnivore and vegetarian volunteers. Casein (equivalent to 105 g protein consumption per day) was used within the systems as a protein source. Two different doses of inulin-type fructans (Synergy1) were later added (equivalent to 10 g per day in vivo and 15 g per day) to assess whether this influenced protein fermentation. Bacteria were enumerated by fluorescence in situ hybridization with flow cytometry. Metabolites from bacterial fermentation (short-chain fatty acid [SCFA], ammonia, phenol, indole, and p-cresol) were monitored to further analyze proteolysis and the prebiotic effect. A significantly higher number of bifidobacteria was observed with the addition of inulin together with reduction of Desulfovibrio spp. Furthermore, metabolites from protein fermentation, such as branched-chain fatty acids (BCFA) and ammonia, were significantly lowered with Synergy1. Production of p-cresol varied among donors, as we recognized four high producing models and two low producing models. Prebiotic addition reduced its production only in vegetarian high p-cresol producers.IMPORTANCE Dietary protein levels are generally higher in Western populations than in the world average. We challenged three-stage continuous colonic model systems containing high protein levels and confirmed the production of potentially harmful metabolites from proteolysis, especially replicates of the transverse and distal colon. Fermentations of proteins with a prebiotic supplementation resulted in a change in the human gut microbiota and inhibited the production of some proteolytic metabolites. Moreover, we observed both bacterial and metabolic differences between fecal bacteria from omnivore donors and vegetarian donors. Proteins with prebiotic supplementation showed higher Bacteroides spp. and inhibited Clostridium cluster IX in omnivore models, while in vegetarian modes, Clostridium cluster IX was higher and Bacteroides spp. lower with high protein plus prebiotic supplementation. Synergy1 addition inhibited p-cresol production in vegetarian high p-cresol-producing models while the inhibitory effect was not seen in omnivore models.


Assuntos
Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Dieta Rica em Proteínas , Microbioma Gastrointestinal/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Prebióticos/administração & dosagem , Adulto , Humanos , Técnicas In Vitro , Pessoa de Meia-Idade , Proteólise , Adulto Jovem
12.
Nutrients ; 12(1)2020 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-31947853

RESUMO

Hyperglycemia is linked to impaired arterial endothelial function (EF), an early sign of cardiovascular disease. We compared the efficacy of low-glycemic index isomaltulose (Palatinose™) with that of sucrose in modulating EF, as assessed by flow-mediated dilation (FMD). In this double-blinded cross-over study, 80 overweight mildly hypertensive subjects were randomized to receive 50 g of either isomaltulose or sucrose. On two non-consecutive days, brachial artery ultrasound FMD scans were obtained prior to and hourly (T0-T3) after carbohydrate load. Blood was drawn immediately after scanning. Glucose and insulin levels were analyzed. Overall, the FMD decrease was attenuated by isomaltulose compared to sucrose (ΔFMD = -0.003% and -0.151%; p > 0.05 for the interaction treatment x period). At T2, FMD was significantly higher after isomaltulose administration compared to that after sucrose administration (FMD = 5.9 ± 2.9% and 5.4 ± 2.6%, p = 0.047). Pearson correlations between FMD and blood glucose showed a trend for a negative association at T0 and T2 independently of the carbohydrate (r-range = -0.20 to -0.23, p < 0.1). Sub-analysis suggested a lower FMD in insulin-resistant (IR) compared to insulin-sensitive subjects. Isomaltulose attenuated the postprandial decline of FMD, particularly in IR persons. These data support the potential of isomaltulose to preserve the endothelial function postprandially and consequently play a favorable role in cardiovascular health.


Assuntos
Sacarose na Dieta/administração & dosagem , Endotélio Vascular/efeitos dos fármacos , Hemorreologia/efeitos dos fármacos , Isomaltose/análogos & derivados , Sobrepeso/fisiopatologia , Adulto , Glicemia/análise , Artéria Braquial/diagnóstico por imagem , Artéria Braquial/fisiopatologia , Estudos Cross-Over , Método Duplo-Cego , Endotélio Vascular/diagnóstico por imagem , Feminino , Índice Glicêmico , Humanos , Hiperglicemia/etiologia , Insulina/sangue , Isomaltose/administração & dosagem , Masculino , Pessoa de Meia-Idade , Sobrepeso/sangue , Sobrepeso/complicações , Período Pós-Prandial , Ultrassonografia
13.
Nutrients ; 11(10)2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31590285

RESUMO

Low-glycemic compared to high-glycemic diets have been shown to improve metabolic status and enhance fat oxidation. The randomized, double-blind, controlled intervention study aimed to evaluate the effects of an energy-reduced diet containing isomaltulose (ISO, Palatinose™) versus sucrose (SUC) on body weight loss. Sixty-four healthy overweight/obese adults were allocated to consume either 40g/d ISO or SUC added to an energy-reduced diet for 12 weeks. Anthropometric measurements, body composition, and energy metabolism were assessed at baseline and after 4, 8, and 12 weeks. Fifty participants (age: 40.7 ± 11.7 y; BMI: 29.4 ± 2.7 kg/m²) completed the study. During the 12 weeks, both groups significantly lost weight (p < 0.001), which was more pronounced following ISO (-3.2 ± 2.9 vs. -2.1 ± 2.6 kg; p = 0.258). Moreover, for participants in the ISO group, this was accompanied by a significant reduction in fat mass (ISO: -1.9 ± 2.5, p = 0.005; SUC: -0.9 ± 2.6%, p = 0.224). The overall decrease in energy intake was significantly higher in the ISO compared to that in the SUC group (p = 0.022). In addition, breakfast containing ISO induced a significantly lower increase in postprandial respiratory quotient (RQ) (mean incremental area under the curve (iAUC)2h for ISO vs. SUC: 4.8 ± 4.1 vs. 6.9 ± 3.1, p = 0.047). The results suggest that ISO in exchange for SUC may help to facilitate body weight reduction, lower postprandial RQ associated with higher fat oxidation, and reduce energy intake.


Assuntos
Restrição Calórica , Metabolismo Energético , Índice Glicêmico , Isomaltose/análogos & derivados , Obesidade/dietoterapia , Sacarose/administração & dosagem , Redução de Peso , Adiposidade , Adulto , Método Duplo-Cego , Inglaterra , Feminino , Humanos , Isomaltose/administração & dosagem , Isomaltose/efeitos adversos , Isomaltose/metabolismo , Masculino , Pessoa de Meia-Idade , Obesidade/diagnóstico , Obesidade/fisiopatologia , Oxirredução , Sacarose/efeitos adversos , Sacarose/metabolismo , Fatores de Tempo , Resultado do Tratamento , Adulto Jovem
14.
Appl Environ Microbiol ; 85(9)2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30824442

RESUMO

Metabolism of protein by gut bacteria is potentially detrimental due to the production of toxic metabolites, such as ammonia, amines, p-cresol, and indole. The consumption of prebiotic carbohydrates results in specific changes in the composition and/or activity of the microbiota that may confer benefits to host well-being and health. Here, we have studied the impact of prebiotics on proteolysis within the gut in vitro Anaerobic stirred batch cultures were inoculated with feces from omnivores (n = 3) and vegetarians (n = 3) and four protein sources (casein, meat, mycoprotein, and soy protein) with and without supplementation by an oligofructose-enriched inulin. Bacterial counts and concentrations of short-chain fatty acids (SCFA), ammonia, phenol, indole, and p-cresol were monitored during fermentation. Addition of the fructan prebiotic Synergy1 increased levels of bifidobacteria (P = 0.000019 and 0.000013 for omnivores and vegetarians, respectively). Branched-chain fatty acids (BCFA) were significantly lower in fermenters with vegetarians' feces (P = 0.004), reduced further by prebiotic treatment. Ammonia production was lower with Synergy1. Bacterial adaptation to different dietary protein sources was observed through different patterns of ammonia production between vegetarians and omnivores. In volunteer samples with high baseline levels of phenol, indole, p-cresol, and skatole, Synergy1 fermentation led to a reduction of these compounds.IMPORTANCE Dietary protein intake is high in Western populations, which could result in potentially harmful metabolites in the gut from proteolysis. In an in vitro fermentation model, the addition of prebiotics reduced the negative consequences of high protein levels. Supplementation with a prebiotic resulted in a reduction of proteolytic metabolites in the model. A difference was seen in protein fermentation between omnivore and vegetarian gut microbiotas: bacteria from vegetarian donors grew more on soy and Quorn than on meat and casein, with reduced ammonia production. Bacteria from vegetarian donors produced less branched-chain fatty acids (BCFA).


Assuntos
Bactérias/metabolismo , Dieta , Microbioma Gastrointestinal , Prebióticos/administração & dosagem , Adulto , Fezes/microbiologia , Fermentação , Humanos , Pessoa de Meia-Idade , Proteólise , Adulto Jovem
15.
Br J Nutr ; 120(6): 711-720, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30064535

RESUMO

Because obesity is associated with many co-morbidities, including diabetes mellitus, this study evaluated the second-meal effect of a commercial prebiotic, inulin-type fructans, and the effects of the prebiotic on faecal microbiota, metabolites and bile acids (BA). Nine overweight beagles were used in a replicated 3×3 Latin square design to test a non-prebiotic control (cellulose) against a low (equivalent to 0·5 % diet) and high dose (equivalent to 1·0 % diet) of prebiotic over 14-d treatments. All dogs were fed the same diet twice daily, with treatments provided orally via gelatin capsules before meals. On days 13 or 14 of each period, fresh faecal samples were collected, dogs were fed at 08.00 hours and then challenged with 1 g/kg body weight of maltodextrin in place of the 16.00 hours meal. Repeated blood samples were analysed for glucose and hormone concentrations to determine postprandial incremental AUC (IAUC) data. Baseline glucose, insulin and active glucagon-like peptide-1 levels were similar between all groups (P>0·10). Glucose and insulin IAUC after glucose challenge appeared lower following the high dose, but did not reach statistical relevance. Prebiotic intervention resulted in an increase in relative abundance of some Firmicutes and a decrease in the relative abundance of some Proteobacteria. Individual and total faecal SCFA were significantly increased (P<0·05) following prebiotic supplementation. Total concentration of excreted faecal BA tended to increase in dogs fed the prebiotic (P=0·06). Our results indicate that higher doses of inulin-type prebiotics may serve as modulators of gut microbiota, metabolites and BA pool in overweight dogs.


Assuntos
Colo , Fezes , Frutanos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Inulina/farmacologia , Obesidade , Prebióticos , Animais , Área Sob a Curva , Ácidos e Sais Biliares/metabolismo , Glicemia/metabolismo , Colo/metabolismo , Colo/microbiologia , Cães , Ácidos Graxos Voláteis/metabolismo , Fezes/química , Fezes/microbiologia , Feminino , Firmicutes/crescimento & desenvolvimento , Frutanos/uso terapêutico , Peptídeo 1 Semelhante ao Glucagon/sangue , Insulina/sangue , Inulina/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Obesidade/microbiologia , Obesidade/veterinária , Período Pós-Prandial , Proteobactérias/crescimento & desenvolvimento
16.
J Nutr ; 148(8): 1300-1308, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29982534

RESUMO

Background: Inulin-type fructans used in formula have been shown to promote microbiota composition and stool consistency closer to those of breastfed infants and to have beneficial effects on fever occurrence, diarrhea, and incidence of infections requiring antibiotic treatment in infants. Objectives: The primary study aim was to explore whether prophylactic supplementation with prebiotic fructans is able to influence the frequency of infectious diseases in kindergarten children during a winter period. A secondary objective was to ascertain the effect on the intestinal microbiota. Methods: 142 boys and 128 girls aged 3-6 y were randomly allocated to consume 6 g/d fructans or maltodextrin for 24 wk. At baseline, stool samples were collected for microbiota analysis and anthropometric measurements were made. During the intervention period diagnoses were recorded by physicians, whereas disease symptoms, kindergarten absenteeism, dietary habits, and stool consistency were recorded by parents. Baseline measurements were repeated at wk 24. Results: In total 219 children finished the study. Both the relative abundance of Bifidobacterium (P < 0.001) and that of Lactobacillus (P = 0.014) were 19.9% and 7.8% higher, respectively, post data normalization, in stool samples of children receiving fructans as compared with those of controls at wk 24. This was accompanied by significantly softer stools within the normal range in the prebiotic group from wk 12 onwards. The incidence of febrile episodes requiring medical attention [0.65 ± 1.09 compared with 0.9 ± 1.11 infections/(24 wk × child), P = 0.04] and that of sinusitis (0.01 ± 0.1 compared with 0.06 ± 0.25, P = 0.03) were significantly lower in the prebiotic group. The number of infectious episodes and their duration reported by parents did not differ significantly between the 2 intervention groups. Conclusions: Prebiotic supplementation modified the composition of the intestinal microbiota and resulted in softer stools in kindergarten-aged children. The reduction in febrile episodes requiring medical attention supports the concept of further studies on prebiotics in young children. This trial was registered at clinicaltrials.gov as NCT03241355.


Assuntos
Bifidobacterium/crescimento & desenvolvimento , Fezes/microbiologia , Frutanos/uso terapêutico , Infecções , Inulina/uso terapêutico , Prebióticos , Índice de Gravidade de Doença , Criança , Pré-Escolar , Colo/microbiologia , Feminino , Febre/etiologia , Frutanos/farmacologia , Microbioma Gastrointestinal , Humanos , Incidência , Infecções/complicações , Inulina/farmacologia , Lactobacillus/crescimento & desenvolvimento , Masculino , Sinusite/prevenção & controle
17.
Eur J Appl Physiol ; 118(1): 223, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29147772

RESUMO

The article "A comparison of isomaltulose versus maltodextrin ingestion during soccer-specific exercise", written by "Emma J. Stevenson, Anthony Watson, Stephan Theis, Anja Holz,·Liam D. Harper, Mark Russell", was originally published Online First without open access. After publication in volume [117], issue [11], page.

18.
Eur J Nutr ; 57(3): 1259-1268, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28255654

RESUMO

PURPOSE: Inulin-type fructans are recognized as prebiotic dietary fibres and classified as non-digestible carbohydrates that do not contribute to glycaemia. The aim of the present studies was to investigate the glycaemic response (GR) and insulinaemic response (IR) to foods in which sucrose was partially replaced by inulin or oligofructose from chicory. METHODS: In a double-blind, randomized, controlled cross-over design, 40-42 healthy adults consumed a yogurt drink containing oligofructose or fruit jelly containing inulin and the respective full-sugar variants. Capillary blood glucose and insulin were measured in fasted participants and at 15, 30, 45, 60, 90, and 120 min after starting to drink/eat. For each test food, the incremental area under the curve (iAUC) for glucose and insulin was calculated and the GR and IR determined. RESULTS: Consumption of a yogurt drink with oligofructose which was 20% reduced in sugars significantly lowered the glycaemic response compared to the full-sugar reference (iAUC120min 31.9 and 37.3 mmol/L/min, respectively; p < 0.05). A fruit jelly made with inulin and containing 30% less sugars than the full-sugar variant likewise resulted in a significantly reduced blood glucose response (iAUC120min 53.7 and 63.7 mmol/L/min, respectively; p < 0.05). In both studies, the postprandial insulin response was lowered in parallel (p < 0.05). The reduction of postprandial glycaemia was positively correlated to the proportion of sugars replaced by inulin-type fructans (p < 0.001). CONCLUSIONS: In conclusion, the studies confirmed that substitution of glycaemic sugars by inulin or oligofructose from chicory may be an effective strategy to reduce the postprandial blood glucose response to foods.


Assuntos
/química , Frutanos/uso terapêutico , Índice Glicêmico , Hiperglicemia/prevenção & controle , Insulina/sangue , Inulina/uso terapêutico , Adoçantes não Calóricos/uso terapêutico , Adulto , Bebidas/efeitos adversos , Glicemia/análise , Condimentos/efeitos adversos , Estudos Cross-Over , Sacarose na Dieta/efeitos adversos , Método Duplo-Cego , Feminino , Frutanos/efeitos adversos , Humanos , Hiperglicemia/sangue , Insulina/metabolismo , Secreção de Insulina , Inulina/efeitos adversos , Inulina/análogos & derivados , Masculino , Adoçantes não Calóricos/efeitos adversos , Oligossacarídeos/efeitos adversos , Oligossacarídeos/uso terapêutico , Período Pós-Prandial , Prebióticos , Iogurte/efeitos adversos , Adulto Jovem
19.
Nutrients ; 9(12)2017 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-29258261

RESUMO

Inadequate dietary fiber intake contributes to the prevalent irregularity and constipation in Western countries. Although eating adequate amounts of fibers from fiber-rich foods, foods with added fibers and dietary fiber supplements is considered the first option for improving laxation, the efficacy can vary among types of fibers. The present study is a randomized control trial that included healthy adult participants with ≤3 bowel movements/week and a habitual low dietary fiber intake in a parallel design to evaluate the benefits for laxation by supplementing the daily diet with oligofructose (Orafti® P95; OF), a fermentable source of fiber and established prebiotic (n = 49); maltodextrin was the placebo (n = 48). After a run-in phase, OF was initially provided at 5 g/day, then increased to 10 and 15 g/day with four weeks for each phase. Stool frequency (bowel movements per week) for the OF and maltodextrin (MD) groups were initially similar (3.98 ± 1.49 vs. 4.06 ± 1.48), did not change for the placebo group, but increased for the OF group with the difference significant at 15 g/day (p = 0.023). Stool consistency was similar and remained unchanged at all doses for both groups. Gastrointestinal sensations were low for both groups. Laxation benefits were especially pronounced for participants with >13 g/day habitual dietary fiber intake, with significant laxation at 10 g and 15 g OF/day (p = 0.04 and p = 0.004, respectively) A daily supplement with a short-chain inulin-type fructan derived from chicory roots, i.e., oligofructose (Orafti® P95) provided a laxation effect without causing gastrointestinal (GI) distress for healthy participants with irregularity associated with low dietary fiber intake.


Assuntos
Fibras na Dieta/administração & dosagem , Laxantes/administração & dosagem , Oligossacarídeos/administração & dosagem , Adolescente , Adulto , Idoso , Constipação Intestinal/tratamento farmacológico , Defecação/efeitos dos fármacos , Dieta , Suplementos Nutricionais , Método Duplo-Cego , Fezes/química , Feminino , Fármacos Gastrointestinais/administração & dosagem , Gastroenteropatias/tratamento farmacológico , Humanos , Masculino , Pessoa de Meia-Idade , Polissacarídeos/administração & dosagem , Prebióticos/administração & dosagem , Adulto Jovem
20.
Eur J Appl Physiol ; 117(11): 2321-2333, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28929343

RESUMO

PURPOSE: The performance and physiological effects of isomaltulose and maltodextrin consumed intermittently during prolonged soccer-specific exercise were investigated. METHODS: University soccer players (n = 22) performed 120 min of intermittent exercise while consuming 8% carbohydrate-electrolyte drinks (equivalent to ~ 20 g h-1) containing maltodextrin (Glycaemic Index: 90-100), isomaltulose (Glycaemic Index: 32) or a carbohydrate-energy-free placebo in a manner replicating the practices of soccer players (i.e., during warm-up and half-time). Physical (sprinting, jumping) and technical (shooting, dribbling) performance was assessed. RESULTS: Blood glucose and plasma insulin (both P < 0.001) concentrations varied by trial with isomaltulose maintaining > 13% higher blood glucose concentrations between 75 and 90 min versus maltodextrin (P < 0.05). A decline in glycaemia at 60 min in maltodextrin was attenuated with isomaltulose (-19 versus -4%; P = 0.015). Carbohydrates attenuated elevations in plasma epinephrine concentrations (P < 0.05), but isomaltulose proved most effective at 90 and 120 min. Carbohydrates did not attenuate IL-6 increases or reductions in physical or technical performances (all P > 0.05). Ratings of abdominal discomfort were influenced by trial (P < 0.05) with lower values for both carbohydrates compared to PLA from 60 min onwards. CONCLUSIONS: Although carbohydrates (~ 20 g h-1) did not attenuate performance reductions throughout prolonged soccer-specific exercise, isomaltulose maintained higher blood glucose at 75-90 min, lessened the magnitude of the exercise-induced rebound glycaemic response and attenuated epinephrine increases whilst maintaining similar abdominal discomfort values relative to maltodextrin. When limited opportunities exist to consume carbohydrates on competition-day, low-glycaemic isomaltulose may offer an alternative nutritional strategy for exercising soccer players.


Assuntos
Desempenho Atlético , Exercício Físico , Isomaltose/análogos & derivados , Polissacarídeos/farmacologia , Futebol/fisiologia , Administração Oral , Glicemia/metabolismo , Esquema de Medicação , Epinefrina/sangue , Humanos , Insulina/sangue , Interleucina-6/sangue , Isomaltose/administração & dosagem , Isomaltose/efeitos adversos , Isomaltose/farmacologia , Masculino , Polissacarídeos/administração & dosagem , Polissacarídeos/efeitos adversos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...